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The generalized Lagrangian mean (GLM) formulation is used to describe the interac-
tion of waves and currents. In contrast to the more conventional Eulerian formulation
the GLM description enables splitting of the mean and oscillating motion over the
whole depth in an unambiguous and unique way, also in the region between wave crest
and trough. The present paper deals with non-breaking long-crested regular waves on
a current using the GLM formulation coupled with a WKBJ-type perturbation-series
approach. The waves propagate under an arbitrary angle with the current direction.
The primary interest concerns nonlinear changes in the vertical distribution of
the mean velocity due to the presence of the waves, but modifications of the orbital
velocity profiles, due to the presence of a current, are considered as well. The special
case of no initial current, where waves induce a so-called drift velocity or mass-
transport velocity, is also studied.

1. Introduction
The interaction of waves and currents is of importance for a good prediction of the

vertical structure of the mean flow field and the resulting morphodynamics in coastal
areas. Processes that couple mean and fluctuating motions have been the subject of
numerous publications. A large number of theoretical solutions for waves on currents
with uniform or sheared profiles exist and have been discussed in a number of review
articles, e.g. Peregrine (1976) or Jonsson (1990). In contrast to the large number of
theoretical solutions, the amount of experimental data is very limited. The available
data tend to concentrate on flow features in the near-bed region. At greater heights
above the beds some experimental data have been reported by Bakker & Van Doorn
(1978) and Kemp & Simons (1982, 1983). The latter considered waves following and
opposing a turbulent current. Swan (1990) observed the modification of the wave
motion in the presence of a strongly sheared current velocity throughout the depth of
the flow field and compared these data with existing theoretical solutions. Klopman
(1994) measured orbital and mean velocities over the whole depth of a channel in
experiments concerning waves following and opposing a turbulent current.

Waves are known to have a considerable impact on the mean-velocity profiles.
Longuet-Higgins (1953) emphasized the role of viscosity by showing that outside the
thin oscillatory viscous boundary layers near the bottom and the free surface there is
a mean drift velocity. Craik (1982a) extended this theory by considering temporally
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and spatially decaying waves and discussed the influence of surface contamination.
Russell & Osorio (1957) and Mei, Liu & Carter (1972) measured drift velocities in
a wave flume. Mei et al. (1972) state on pp. 151–152 that they obtain quantitative
agreement (for a certain range of wave slopes kh) with Longuet-Higgins’ conduction
solution. More recently, Iskandarani & Liu (1991a,b, 1993) reported on experiments
on two- and three-dimensional mass transport velocity profiles.

Waves not only induce mean velocities, but also modify existing current profiles.
Experiments in laboratory channels like those of Bakker & Van Doorn (1978), Kemp
& Simons (1982, 1983) and Klopman (1994), have indicated that the mean-velocity
shear increases when waves propagate against the current direction and decreases
or even changes sign when waves are propagating in the current direction. To the
authors’ knowledge, these observations have only been explained qualitatively, by
Nielsen & You (1996) and Dingemans et al. (1996). The model proposed by Nielsen
& You (1996) relies on a local force balance in a plane in the streamwise direction.
Dingemans et al. (1996) show that secondary circulations in the cross-sectional plane,
which are the result of the so-called wave-induced Craik–Leibovich (CL) vortex
force, are responsible for changes in the mean horizontal velocities in the streamwise
direction. However, for both models the results do not agree quantitatively with the
experimental results.

The problems of understanding the mechanism of wave–current interactions have
mostly been tackled via the Eulerian equations of mean motion. However, a major
difficulty with the Eulerian representation of the flow field is the unique and unam-
biguous identification of the mean motion in an otherwise oscillating field, since at
a fixed position between wave trough and wave crest there is water only part of
the time. This difficulty can be avoided by considering the Lagrangian representation
of the flow field. However, this formulation cannot be applied in any exact sense,
if the Lagrangian-mean velocity is required at a specific point in space. This is due
to the fact that the particle to be followed will generally wander away from this
point. A consistent way to split the mean and oscillating motion is through the
generalized Lagrangian-mean (GLM) method as proposed by Andrews & McIntyre
(1978a). This is a hybrid Eulerian–Lagrangian description of motion, in which the
Lagrangian-mean flow is described by means of equations in Eulerian form.

Andrews & McIntyre (1978a) derived the exact equations of GLM motion from
the compressible Navier–Stokes equations. In these equations the wave forcing can
be expressed either by the pseudomomentum or by a radiation-stress tensor, although
the latter approach was merely used to provide a general framework for explaining
the asymmetry of the radiation-stress tensors. In their two papers Andrews & McIn-
tyre (1978a,b) concentrated on the influence of the pseudomomentum on the mean
motion and its physical and conceptual meaning. Later, Grimshaw (1984) employed
a technique based on variational principles to describe the wave–current interaction.
Not only the pseudomomentum approach, often seen as characteristic for the GLM
equations, but also the radiation-stress formulation were emphasized.

Despite the fact that Andrews & McIntyre (1978a) took dissipative forces into
account, they were not treated in detail. Grimshaw (1981) included dissipation due to
viscous effects in a GLM model which predicts the flow generated by a progressive
non-breaking wave packet in otherwise still water. The assumption that an initial
current is absent simplified the expressions for the dissipative forces significantly.
Grimshaw (1981) produced analytical solutions for the GLM flow, up to second
order in wave amplitude a.

The purpose of this paper is to develop a model which describes the flow field
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associated with non-breaking long-crested waves on an arbitrary current. Nonlinear
changes in the mean velocity profile due to the presence of waves are considered, as
well as modifications of the orbital velocity profiles caused by a current. Compared
to Grimshaw’s model the viscous terms turn out to be very lengthy and therefore
difficult to implement in the model. For this reason an alternative approach to derive
the GLM equations is described as well. This approach follows the radiation-stress
approach mentioned above and is shown to bear some resemblance to the Eulerian
equations of motion.

The arrangement of this paper is as follows. The GLM formulation of the equations
describing the mean and fluctuating motion is given in § 2. The turbulence model that
provides the closure of the flow equations if the motion is turbulent is discussed in
§ 3.1. The alternative approach to the GLM formulation is outlined in § 3.2. Proper
boundary conditions at the bottom and the free surface are derived in § 4. The GLM
equations are solved using a WKBJ-type perturbation-series approach. The resulting
boundary-value problem, with only the vertical spatial coordinate as independent
variable, is solved numerically. This solution method is described in § 5. In § 6 the
presented model is applied to wave–current channel problems and the results from
our model are compared with both theoretical solutions and experimental data. A
summary and conclusions are finally given in § 7.

2. Generalized Lagrangian-mean formulation
Before proceeding with the description of the GLM theory, some remarks on the

notation throughout this paper are made. Latin indices i, j or k take the value
1, 2 or 3. It is sometimes convenient in the subsequent analysis to distinguish
between horizontal coordinates xα (α = 1, 2) and the vertical coordinate z = x3 by
employing Greek indices for horizontal variables and Latin variables for all three
coordinates. Similarly, uα denotes a horizontal velocity component and w = u3 the
vertical velocity. A different notation has been used for vectors operating in all three
directions, u = (u1, u2, u3) and those involving the horizontal direction, uh = (u1, u2).
Furthermore, Einstein’s summation convention is used, i.e. ujvj = u1v1 + u2v2 + u3v3.

The description of the basic formalism of the GLM theory is outlined here in a
somewhat abstract way. In the GLM theory GLM operators are related to Eulerian-
mean operators. Let ( ) be a general averaging operator (time, space, ensemble, etc.)
taking a scalar, vector or tensor field ϕ(x, t) into a corresponding (Eulerian-mean)
field ϕ(x, t) = ϕ(x, t) = 〈ϕ(x, t)〉 at position x and time t. The notation 〈( )〉 is also used
for the same averaging operator, for the sake of convenience. Whether the operator
denotes time, space or ensemble averaging is not relevant for the general outline
of the GLM theory at this stage. When model results from the GLM theory are
compared with experimental data or when theoretical ideas are fixed, the averaging
operation has to be specified.

To overcome the problems mentioned in § 1, arising in the Eulerian and pure
Lagrangian framework, Andrews & McIntyre (1978a) generalized the classical
Lagrangian-mean description in such a way that the expression ‘Lagrangian-mean
velocity field ’ makes sense. For the definition and notion of the GLM theory we could
just refer to Andrews & McIntyre (1978a), or McIntyre (1980) for an introductory
outline, but for completeness it will be repeated briefly here. An essential part in the
GLM theory is the definition of the particle displacement ξ associated with the waves.
Like all quantities in the GLM formulation, it is defined as a function of the position
x and time t and no longer primarily as a function of the individual particle label as in
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a purely Lagrangian description. In fact, the generalized Lagrangian flow is described
by means of equations in Eulerian form. When the disturbance-associated particle

displacement ξ(x, t) has been defined, the exact GLM operator ( )
L
, corresponding to

any given Eulerian-mean operator 〈( )〉, can be defined as

ϕ(x, t)
L

= 〈ϕ(x+ ξ(x, t), t)〉 , (2.1)

i.e. the average is taken with respect to the disturbed positions. Instead of ϕ(x +
ξ(x, t), t) the notation ϕξ(x, t) is used as well. ϕξ is also called the shifted ϕ. Further-
more, the disturbed position is denoted by Ξ(x, t) = x+ ξ(x, t).

By assuming that the mapping x → x + ξ(x, t) is invertible, Andrews & McIntyre
(1978a, p. 615) stated that for any given u(x, t) there is a unique ‘reference velocity
field’ v(x, t), such that, when the point x moves with the velocity v the point x + ξ
moves with the actual velocity uξ , i.e.(

∂/∂t+ vj∂/∂xj
)
Ξ = uξ. (2.2)

Andrews & McIntyre (1978a, p. 615) obtained the GLM description by requiring that

ξ(x, t) = 0, (2.3)

i.e. that ξ is a true disturbance quantity and that the reference velocity v is a mean
quantity,

v(x, t) = v(x, t), (2.4)

which yields v = uL. By introducing the Lagrangian disturbance velocity u` in a
natural way as

u`(x, t) = uξ(x, t)− u(x, t)L (2.5)

relation (2.2) yields

D
L
ξ = u`, (2.6)

with D
L

= ∂/∂t + uLj ∂/∂xj the generalized Lagrangian-mean material derivative,
denoting the rate of change following the GLM flow. Relation (2.6) between the
disturbance-associated fields ξ and u` not only defines ξ but also validates the claim
to regard ξ as a disturbance-associated particle displacement.

Finally, Eulerian-mean and generalized Lagrangian-mean quantities are related to
each other by the generalized ‘Stokes correction’ ϕS , which is defined as (see also
Appendix A, §A.2 for an expression in terms of GLM quantities)

ϕ(x, t)
S

= ϕ(x, t)
L − ϕ(x, t). (2.7)

When ϕ denotes velocity u, the Stokes correction uS is sometimes referred to as Stokes
drift.

The derivation of the GLM equations of motion is based on the equations of
motion for an incompressible homogeneous fluid in an Eulerian formulation, which
are given by the mass-conservation equation,

∂uj

∂xj
= 0, (2.8)

and the momentum equation,

Dui
Dt

+
1

ρ

∂p

∂xi
−Xi = Fi, (2.9)
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where D/Dt = ∂/∂t + uj∂/∂xj denotes the material derivative, p is ressure and ρ
the density. X is a function which allows for contributions which can be ascribed to
viscosity and/or turbulence and whose form is left general is this section. In § 3 the
function X will be specified. Finally, F represents large-scale driving forces for the
mean flow in the horizontal direction and equals the gravitational acceleration in the
vertical direction. These equations are completed with boundary conditions at the
bottom and free surface, which are derived in § 4.

Andrews & McIntyre (1978a) derived the exact GLM equations of motion from
the compressible Navier–Stokes equations. Nevertheless, the GLM theory can also be
applied to incompressible flow problems. The general idea is to consider the variables
in (2.8), (2.9) at their displaced positions, multiplying the momentum equations by
∂Ξj/∂xi and taking the mean of the resulting equation. These operations result in the
GLM equations which are given by

∂uLj

∂xj
= −D

L
(log J), (2.10)

and

D
L
uLi +

1

ρ

∂pL

∂xi
−XL

i − F
L

i

=

〈
∂ξj

∂xi
X`
j

〉
+

〈
∂ξj

∂xi
F`j

〉
+ D

L
P
L

i +
∂

∂xi

(
1
2

(
u`j u

`
j

))
+ P

L

j

∂uLj

∂xi
. (2.11)

Here J is the Jacobian of the mapping x → x + ξ, i.e. J = det(∂Ξj/∂xi), and

P
L

i = −
〈
u`j ∂ξj/∂xi

〉
is the so-called pseudomomentum. For an extensive derivation

of the GLM flow equations (2.10), (2.11) reference is made to Andrews & McIntyre
(1978a) and Dingemans (1997, § 2.10.6). The influence of the wave motion on the mean
motion is given by the right-hand side of (2.11). In order to quantify the wave-induced
force on the mean motion the pseudomomentum seems an important quantity. For
the physical and conceptual meaning of the pseudomomentum see e.g. Andrews &
McIntyre (1978b), Craik (1982b) or Grimshaw (1984).

The GLM equations of motions are exact equations in the sense that no asymptotic
analysis is required as long as viscous or turbulence effects are not fully specified and
left as general as in (2.11). As Andrews & McIntyre (1978a) mentioned throughout
their derivation of the GLM equations, these equations also hold for finite-amplitude
waves. Incorporation of viscous effects unavoidably requires some asymptotic analysis.
A correct formulation of the viscous part in terms of GLM quantities leads to lengthy

expressions for the function X
L

i . As to be expected the situation is worse for turbulent
motion. Therefore, the derivation of the GLM equations by Andrews & McIntyre
(1978a) is adapted in § 3.2.

3. A form of the GLM equations analogous to the Eulerian mean equations
Before proceeding with the alternative derivation of the GLM equations of motion,

the function X is specified in order to deal with viscosity or turbulence. When the
flow is considered viscous and non-turbulent, the function X can be expressed using
the stress tensor,

Xi =
1

ρ

∂τij

∂xj
,

τij

ρ
= ν

(
∂ui

∂xj
+
∂uj

∂xi

)
, (3.1)
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where ν equals the kinematic viscosity. In fact, the same representation can be used
in the turbulent regime. The shear stresses are directly related to the strain-rate
tensor by using Boussinesq’s hypothesis. A turbulence model has been implemented
to determine the eddy viscosity ν and provide a proper closure of the model equations.

3.1. Turbulence model

A review of turbulence models and their use in hydrodynamic problems can be found
in Rodi (1984). Following Klopman (1992) a one-equation turbulence model has been
implemented. By denoting the turbulence kinetic energy per unit of mass by q, the
evolution equation of q can be modelled as

Dq

Dt
−P+D− ∂fj

∂xj
= 0, (3.2)

with

P ≡ ν
(
∂um

∂xk
+
∂uk

∂xm

)
∂uk

∂xm
, (3.3)

D ≡ CD
q3/2

`
, (3.4)

fi ≡
ν

σk

∂q

∂xi
. (3.5)

Here P,D, fi denote the turbulence kinetic energy production, dissipation and flux in
the xi-direction respectively. Furthermore, ` is the prescribed turbulence lengthscale
and CD and σk are empirical constants. The eddy viscosity is related to q and ` by

ν = C
′

µq
1/2 `, (3.6)

with C
′

µ another constant.
In § 5.2 the implementation of this turbulence model in the GLM model will be

outlined in more detail. Values for the empirical constants as well as an expression
for the mixing-length will be given in § 6.

3.2. Inclusion of shear stresses in GLM equations

The GLM counterpart X
L

can be expressed in terms of GLM quantities by averaging
(3.1) at disturbed positions. Second-order partial derivatives of the velocities lead to
very lengthy expressions. They will be omitted in this paper. Another option is to
split the transformation of X into two steps in which the shear stress tensor τij is
maintained as dependent variable. However, evaluation at the disturbed positions still

requires a lot of effort. In order to obtain lucid expressions for X
L
, the equations

are no longer evaluated at the disturbed positions, but at the fixed positions. As
mentioned in the introduction Andrews & McIntyre (1978 a, § 8) used this approach
as well to show the general limitations of the ‘radiation stress’ concept.

As already stated, the momentum equation (2.9) is considered at the fixed point
x. In Appendix A, §§A.1 to A.3 the GLM equations are derived in an alternative
way, using asymptotic analysis at some stage. Here only the resulting equations are
stated. The disturbance-related quantities, like ξ and u`, scale with the wave motion,
which has amplitude a. This wave amplitude is supposed to be small with respect
to both depth and wavelength. Despite the fact that a is not dimensionless, the
order of approximation is denoted by O(an). Since the equations of motion are not
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non-dimensionalized, O(a) is used for convenience instead of O(ε) with ε = ka or
ε = a/h.

Application of several properties of the mapping x → x + ξ and Taylor series
expansion of the total motion around the disturbed position x + ξ leads, after
averaging, to equations of motion for the mean motion. As shown in Appendix A,
§A.3, subtraction of the equation for the mean motion from the equation for the total
motion result in an equation for the fluctuating part,

D
L
u`i +

1

ρ

∂

∂xi

(
p` − ξj

∂pL

∂xj

)
− 1

ρ

∂

∂xj

(
τ`ij − ξk

∂τLij

∂xk

)
= ξj

∂

∂xj

(
D
L
uLi

)
+ O(a2). (3.7)

The disturbance displacement ξ is related to the disturbance velocity u` by relation
(2.6). For the mean motion the following equation holds:

D
L
uLi +

1

ρ

∂pL

∂xi
− 1

ρ

∂τLij

∂xj
− FLi = S

L

i . (3.8)

The wave-induced driving force for the mean motion S
L

i can be written as

S
L

i =
1

ρ

∂pS

∂xi
− 1

ρ

∂τSij

∂xj
− FSi + R

L

i , (3.9)

where

R
L

i = −∂rij
∂xj
−
〈
ξj
∂ξk

∂xj

〉
∂

∂xk

(
D
L
uLi

)
− 1

2
ξjξk

∂2

∂xj∂xk

(
D
L
uLi

)
+ O(a3), (3.10)

and

rij = u`i u
`
j −D

L
(
u`i ξj

)
. (3.11)

In Appendix A, §A.4 expressions are derived which relate the mean and fluctuating
shear stresses τLij and τ`ij to the GLM and disturbed velocities for arbitrary distributions
of the eddy viscosity ν.

The tensor rij is closely related to the radiation-stress tensors defined, amongst
others, by Longuet–Higgins & Stewart (1964). Andrews & McIntyre (1978a, p. 634),

who derived a tensor which depends on the pressure part of the driving force S
L

i

in (3.9), stated that in order to be called a radiation stress, rij must represent the

sole effect of the waves on the mean flow. Although R
L

i will be dominated by rij ,
for turbulent motion the effect of the Stokes correction of the shear stress τSij on

the wave-induced driving force S
L

i will be significant. In the case of inviscid motion,
Andrews & McIntyre concluded that rij represents the sole effect of the waves and
thus can be called a radiation stress.

When viscous and/or turbulence effects are neglected, the GLM equations con-
sisting of the mass conservation equation (2.10) and the momentum equation (3.8)
are not exact, i.e. third- and higher-order wave-induced terms have been omitted.
In contrast to the original GLM momentum equation (2.11) the alternative GLM
equations have to be modified if more accurate solutions are required. Therefore,
the alternative GLM equations do not seem to be convenient for inviscid flows.
However, if the shear stresses have to be included, asymptotic analysis will lead to
descriptions which are more lucid in the alternative approach. Moreover, the function
Xi is written as a divergence of the shear stresses in order to obtain a system of
first-order differential equations. Furthermore, in the form presented in this section
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the GLM equations have a similar form to the Eulerian equations. By evaluating the
right-hand side of equations (2.10) and (3.8) the GLM quantities can be computed
by existing numerical models which solve the Eulerian equations (2.8), (2.9). Finally,
boundary conditions are often formulated in terms of normal and tangential stresses.
In the present formulation, in which the shear stresses are dependent variables, these
conditions can be worked out easily, as will be shown in § 4.

4. Boundary conditions
An important aspect in this analysis is the derivation of the boundary conditions,

especially at the free surface. The bottom is assumed to be impermeable, resulting in
a vanishing vertical velocity at the bottom. Furthermore, the bottom is a so-called
no-slip boundary, causing the horizontal velocity to vanish. Therefore the following
conditions hold at z = −h(xh):

ui = 0. (4.1)

At the bottom the production of turbulence kinetic energy is assumed to be in
balance with the dissipation of turbulence kinetic energy. This results in the following
boundary condition:

q − ν

(C ′µ)
2

[(
∂uk

∂xm
+
∂um

∂xk

)
∂uk

∂xm

]1/2

= 0. (4.2)

Andrews & McIntyre (1978a) have mentioned that at an impermeable boundary the
component of the GLM velocity normal to the bottom boundary equals the velocity
of the boundary itself. Moreover, since a particle at the bottom will stick to its
position the disturbance displacement and so the GLM velocity will vanish at the
bottom,

ξi = 0, uLi = 0. (4.3)

At the free surface, which is unknown beforehand, two types of boundary conditions
are imposed. The kinematic boundary condition states that the normal velocity
component of the free surface equals the normal velocity component of the flow,

Dζ

Dt
= w. (4.4)

The dynamic boundary condition denotes a balance between the normal and shear
stresses on both sides of the free surface,

niτijnj − p = −pF , (4.5a)

niτijrj = −τFr , (4.5b)

niτijsj = −τFs , (4.5c)

where n, r, s form an orthonormal set of vectors, such that the n-direction is normal to
the free surface and the r- and s-directions are tangential to the free surface. In (4.5)
surface tension effects are neglected. Moreover, pF denotes the pressure and τFr , τFs
equal the wind shear stress components just above the free surface. The boundary
condition for the turbulence kinetic energy is assumed to be a symmetry condition
(see Klopman 1992):

∂q

∂n
=

∂q

∂xj
nj = fjnj = 0. (4.6)

The free-surface boundary conditions are transformed into a GLM formulation
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without special effort, if the assumption that the mapping x→ x+ ξ(x, t) is invertible
is accepted. If the fluid particles are assumed to be in their disturbed positions Ξ ,
one can always split these positions as Ξ = x + ξ(x, t). Hence, if the free surface in
Eulerian coordinates is given by

z − ζ(xh, t) = 0, (4.7)

with ζ the deviation of the free surface from the still-water level z = 0, and a point
on the free surface is considered to be in a disturbed position, then by splitting the
disturbed position, one finds

z + ξ3(xh, z, t)− ζ(xh + ξh(xh, z, t), t) = 0. (4.8)

According to definitions (2.1) and (2.3) averaging relation (4.8) results in a description
of the free surface in GLM coordinates,

z = ζ
L
(xh, t). (4.9)

Furthermore, at this level the vertical displacement equals the oscillating part of the
GLM free-surface elevation, i.e.

η(xh, z, t) ≡ ξ3(xh, z, t) = ζl(xh, t) for z = ζ
L
(xh, t). (4.10)

This approach was followed by Grimshaw (1981) as well. By applying relations (4.8)
and (4.9) the following identity can be derived:

ϕξ( xh, ζ
L
(xh, t), t )

≡ ϕ
{
xh + ξh

[
xh, ζ

L
(xh, t), t

]
, ζ

L
(xh, t) + η

[
xh, ζ

L
(xh, t), t

]
, t
}

= ϕ
{
xh + ξh

[
xh, ζ

L
(xh, t), t

]
, ζ
(
xh + ξh

[
xh, ζ

L
(xh, t), t

]
, t
)
, t
}
, (4.11)

which implies that generalized Lagrangian arguments are attached to the free surface
in a GLM formulation if Eulerian arguments are evaluated at the free surface in an
Eulerian framework.

By applying relation (4.11) the kinematic boundary condition (4.4) is transformed
directly to

D
L
ζξ = wξ for z = ζ

L
(xh, t). (4.12)

If the pressure and the wind shear stresses just above the free surface are neglected,
the dynamic boundary conditions (4.5) are equivalent to

−pni + τijnj = 0 for z = ζ(xh, t), (4.13)

with nα = −∂ζ/∂xα, n3 = 1. Application of relation (4.11) immediately yields

−pξnξi + τξijn
ξ
j = 0 for z = ζ

L
(xh, t), (4.14)

with

nξα = −
(
∂ζξ

∂xa
− ∂ξβ

∂xa

∂ζξ

∂xb

)
+ O(a3), nξ3 = 1. (4.15)

After averaging, proper boundary conditions at the free surface z = ζ
L
(x, t) are
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obtained. For the GLM flow they read up to second order

τLα3 = −
〈
p`
∂ζ`

∂xa

〉
− pL

(
∂ζ

L

∂xa
−
〈
∂ξβ

∂xa

∂ζ`

∂xb

〉)

+

〈
τ`αβ

∂ζ`

∂xb

〉
+ τLαβ

(
∂ζ

L

∂xb
−
〈
∂ξγ

∂xb

∂ζ`

∂xγ

〉)
+ O(a3), (4.16a)

−pL + τL33 =

〈
τ`3β

∂ζ`

∂xb

〉
+ τL3β

(
∂ζ

L

∂xb
−
〈
∂ξγ

∂xb

∂ζ`

∂xγ

〉)
+ O(a3), (4.16b)

and for the fluctuating motion up to first order,

τ`α3 = −pL ∂ζ
`

∂xa
+ τLαβ

∂ζ`

∂xb
+ O(a2), (4.17a)

−p` + τ`33 = τL3β
∂ζ`

∂xb
+ O(a2). (4.17b)

5. WKBJ perturbation-series approach
The equations for the mean and fluctuating motion show that the wave motion has

an impact on the mean motion and vice versa. The equations describing both types
of motion can be solved simultaneously but this would be very inefficient due to
nonlinearities. Therefore, a WKBJ-type expansion into perturbation series is carried
out to distinguish between the slow modulation of the current profile in time and the
horizontal direction and the fast varying wave components.

5.1. Description of the WKBJ method

The essence of the WKBJ-expansion method is to suppose that the amplitude function
A of a quantity ϕ(x, t) varies much more slowly in time and horizontal space than
the phase function S . We suppose that ϕ can be represented as

ϕ(x, t) = ϕ(xh, z, t) = A(xh, z, t) exp (iS(xh, z, t)) , (5.1)

with i =
√
−1. Let δ be a small modulation parameter, indicating the slight relative

variation in the mean motion on the scale of the characteristic wavelength. By
introducing slowly varying temporal and horizontal spatial coordinates

X h = δxh, T = δt, (5.2)

the function ϕ in (5.1) can be rewritten as

ϕ(x, t) = A(X h, z, T ) exp
(
iS(xh, z, t)/δ

)
. (5.3)

More details on the WKBJ expansion method can be found e.g. in Olver (1974,
chapter 6).

A variation on the WKBJ method is given by Chu & Mei (1970). They introduced
the characteristic wave slope ε = ka, with k and a characteristic values of the
wavenumber and the wave amplitude, as a nonlinearity parameter and assumed ε
to be of the same order as the modulation parameter δ. By expanding to both
nonlinearity and rate of modulation the following expansions of WKBJ type were
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assumed:

ϕ(x, t) =

∞∑
n=0

εn
+n∑

m=−n
ϕ̂(n,m)(X h, z, T )Em, (5.4)

where

E = exp
(
i
(
kβXβ − ωT

)
/ε
)
. (5.5)

with ϕ̂(n,−m) complex conjugates of the amplitude functions ϕ̂(n,m). The wavenumber
and wave frequency are denoted by k and ω. Chu & Mei (1970) expanded k and ω to
nonlinearity as well, which is omitted in this paper. The approach of expanding each
quantity, except the wavenumber and frequency, into the perturbation series given by
(5.4), has been used before by Lo & Mei (1985).

5.2. Application of the WKBJ method to the GLM equations

Due to the introduction of slow horizontal and temporal coordinates, substitution
of variables as perturbation series into the GLM equations of motion (2.10), (3.8)
results in a cascade of problems at the different orders of approximation, which can
be solved successively. These problems are systems of ordinary differential equations
(ODEs) with the vertical coordinate z as the only independent variable. Except for the
(0, 0)-problem, these ODEs are linear. In the obtained hierarchical system the (0,0)-
solution is the basic solution, describing a uniform steady current. Slow variations
are described by the (1, 0)-solution. The (1, 1)-solution is the wave part, describing
the motion of the waves according to the linear theory including the effect of mean
velocity shear. Finally, the (2, 0)-solution describes the second-order changes in the
mean velocity profile due to the presence of waves.

Substitution of the expanded forms into the governing equations (2.10), (3.8) and
boundary conditions at the bottom boundary (4.3) and at the free surface (4.12),
(4.14), results in the following set of ODEs for each index (n, m):

imkβû
(n,m)
β +

∂ŵ(n,m)

∂z
= F̂ (n,m), (5.6)

−imω0û
(n,m)
α + ŵ(0,0) ∂û

(n,m)
α

∂z
+ imkα

1

ρ

(
p̂(n,m) − η̂(n,m) ∂p̂

(0,0)

∂z

)

−imkβ
1

ρ

(
τ̂

(n,m)
αβ − η̂(n,m)

∂τ̂
(0,0)
αβ

∂z

)
− 1

ρ

∂

∂z

(
τ̂

(n,m)
α3 − η̂(n,m) ∂τ̂

(0,0)
α3

∂z

)
= Ĝ(n,m)

α , (5.7a)

−imω0ŵ
(n,m) + ŵ(0,0) ∂ŵ

(n,m)

∂z
+

1

ρ

∂

∂z

(
p̂(n,m) − η̂(n,m) ∂p̂

(0,0)

∂z

)

−imkβ
1

ρ

(
τ̂

(n,m)
3β − η̂(n,m)

∂τ̂
(0,0)
3β

∂z

)
− 1

ρ

∂

∂z

(
τ̂

(n,m)
33 − η̂(n,m) ∂τ̂

(0,0)
33

∂z

)
= Ĝ

(n,m)
3 . (5.7b)

Here ω0 = ω − kβû(0,0)
β denotes the intrinsic frequency. The forcing functions F̂ (n,m),

Ĝ
(n,m)
i are in terms of amplitude functions of order lower than n. Since η(x, t) = 0 due

to restriction (2.3), the zeroth harmonic (m = 0) of η equals zero

η̂(n,0) = 0 for n > 0, (5.8)

and because the still-water level is described by z = 0 not only in an Eulerian
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framework but in a GLM formulation as well, the zeroth-order free-surface elevation
vanishes,

ζ̂(0,0) = 0. (5.9)

The amplitude function of the disturbance displacement ξ satisfies upon using (2.6),

−imω0ξ̂
(n,m)
i + ŵ(0,0) ∂ξ̂

(n,m)
i

∂z
= û

(n,m)
i + D̂

(n,m)
i for n > 1, m 6= 0, (5.10)

with the bottom boundary condition

ξ̂
(n,m)
i = 0 for z = −h and n > 1, m 6= 0. (5.11)

Furthermore, at the free surface the vertical disturbance displacement equals the
fluctuating part of the surface elevation, according to (4.10):

η̂(n,m) = ζ̂(n,m) for z = ζ
L

and n > 1, m 6= 0. (5.12)

The boundary conditions at the bottom boundary are given by

û
(n,m)
i = Ĥ

(n,m)
i . (5.13)

The boundary conditions at the free surface (4.12), (4.14) may be expanded into
Taylor’s series about z = 0,

∞∑
k=0

(
ζ
L
)k

k!

∂k

∂zk

{
D
L
ζζ − wζ

}
= 0, (5.14a)

∞∑
k=0

(
ζ
L
)k

k!

∂k

∂zk

{
−pζnζi + τζijn

ζ
j

}
= 0, (5.14b)

resulting into the following conditions at z = 0 for each index (n, m):

−imω0ζ̂
(n,m) − ŵ(n,m) = L̂(n,m), (5.15a)

τ̂
(n,m)
α3 + ζ̂(n,m)

(
imkαp̂

(0,0) − imkβτ̂
(0,0)
αβ

)
+ δ(m)ζ̂(n,0) ∂τ̂

(0,0)
α3

∂z
= K̂ (n,m)

α , (5.15b)

−p̂(n,m) + τ̂
(n,m)
33 − imkβζ̂

(n,m)τ̂
(0,0)
3β + δ(m)ζ̂(n,0)

(
−∂p̂

(0,0)

∂z
+
∂τ̂

(0,0)
33

∂z

)
= K̂

(n,m)
3 . (5.15c)

where δ(m) = 1 for m = 0, otherwise δ(m) = 0.
For the shear stresses the following expressions have been derived from relation

(A 16):

τ̂
(n,m)
αβ

ρ
= ν̂(0,0)

(
imkβû

(n,m)
α + imkαû

(n,m)
β

)
+ T̂

(n,m)
αβ , (5.16a)

τ̂
(n,m)
α3

ρ
= ν̂(0,0)

(
∂û(n,m)

α

∂z
+ imkαŵ

(n,m)

)
+ T̂

(n,m)
α3 , (5.16b)

τ̂
(n,m)
33

ρ
= 2 ν̂(0,0) ∂ŵ

(n,m)

∂z
+ T̂

(n,m)
33 . (5.16c)

For convenience, the expressions for the right-hand sides F̂ (n,m), Ĝ(n,m)
i , D̂(n,m)

i , Ĥ (n,m)
i ,

K̂
(n,m)
i , L̂(n,m), T̂ (n,m)

ij are given in Appendix B up to second order.
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The determination of the eddy viscosity ν is simplified. The distribution of ν
is assumed to consist only of the basic component ν̂(0,0). This means that ν is
independent of both time and wave motion and thus determined only by the steady
current. Hence, after substituting the WKBJ-type expansions into equations (3.2)–
(3.6) and corresponding boundary conditions (4.2), (4.6), which describe the q–`
turbulence model, only the resulting zeroth-order equations have to be considered.
These nonlinear ODEs are given by

ŵ(0,0) ∂q̂
(0,0)

∂z
− P̂(0,0) + D̂(0,0) − ∂f̂

(0,0)
3

∂z
= 0, (5.17)

with

P̂(0,0) ≡ ν̂(0,0)
∂û

(0,0)
β

∂z

∂û
(0,0)
β

∂z
, (5.18a)

D̂(0,0) ≡ CD
(
q̂(0,0)

)3/2

`
, (5.18b)

f̂
(0,0)
3 ≡ ν̂(0,0)

σk

∂q̂(0,0)

∂z
, (5.18c)

ν̂(0,0) = C
′

µ

(
q̂(0,0)

)1/2
`, (5.18d)

and

q̂(0,0) =
ν̂(0,0)

(C ′µ)
2

(
∂û

(0,0)
β

∂z

∂û
(0,0)
β

∂z

)1/2

for z = −h, (5.19a)

f̂
(0,0)
3 = 0 for z = 0 . (5.19b)

The mixing length has to be specified. According to Rodi (1984) the turbulence
lengthscale profile should be linear close to the bottom, i.e. `(s) = κs, with s the
distance to the bed and κ = 0.41 the von Kàrmàn constant. The choice for the mixing
length `, which is prescribed as function of the flow geometry only, of

`(z) = κ (z + h+ z0)

(
−z + za

h+ za

)1/2

for − h 6 z 6 0, (5.20)

was originally proposed by Bakhmetev (1932) for za = 0. The parameter za is intro-
duced to ensure that the mixing length is strictly positive. In this way singularity at
the free surface is avoided. The parameter z0 is related to the roughness of the bed and
denotes the zero-intercept level of a log velocity profile for the situation without waves.

The nonlinear system of ODEs describing the (0, 0)-problem, has been solved
iteratively using a relaxation method, which has been described in Press et al. (1992)
and is primarily based on ideas, which amongst others can be found in Keller (1968,
chapter 3). The linear ODEs for the higher-order problems are solved numerically
using the trapezoidal rule, which is of second-order accuracy. Due to the existence of
boundary layers near the bottom and the free surface, grid refinement (in the vertical
direction) has been carried out in these regions.

6. Application to wave–current channel problems
6.1. Simplification of present model

For model verification two test problems are considered, which both concern wave
and current motion in a laboratory flume. Since a comparison with measurements
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in the centre of the flume has been made and influences from the sidewalls are not
taken into account, lateral variations (in the horizontal direction perpendicular to the
propagation direction, or the y-direction) have been neglected. Furthermore, in all
experiments the mass transport through all cross-sectional planes is assumed constant,
or even zero if no initial current is generated, in a local area around the measuring
point. In a GLM formulation this requirement reads for a rectangular channel∫ ζ

L

−h
uLdz = Q, (6.1)

with Q the prescribed mass transport per unit of channel width. Since the mea-
surements have been carried out in only one cross-section of the flume and we are
interested only in the local solution of flow field, information about the free-surface
elevation has to be specified. Therefore the mean free-surface elevation has been

chosen equal to zero, ζ̂(1,0) = ζ̂(2,0) = 0 and the amplitude function of the fluctuating

part of the free surface is set equal to the measured wave amplitude, ζ̂(1,1) = a.
The zeroth-order solution is supposed to be steady and uniform in the horizontal

direction, thus only dependent on the vertical coordinate z. The horizontal momentum
equation (5.7a) yields a linear shear stress distribution in the current direction, or
x-direction,

τ̂
(0,0)
13 = τ̂

(0,0)
b

(−z
h

)
, (6.2)

with τ̂(0,0)
b the bottom shear stress for the uniform current. The constant τ̂(0,0)

b is chosen

such that for a given mass transport Q̂(0,0), the horizontal zeroth-order velocity û(0,0)

satisfies

Q̂(0,0) =

∫ 0

−h
û(0,0)dz. (6.3)

The hydrostatic pressure distribution is found from the vertical momentum equation,

p̂(0,0) = −ρgz. (6.4)

As described at the end of § 5.2 the nonlinear equations (5.17)–(5.19) together with
the relations (6.2)–(6.4) are solved numerically. For a more detailed description of
this (0, 0)-problem see Klopman (1992).

Since at first order (n = 1,−1 6 m 6 1) all the forcing terms are zero, the solution
for the mean motion at first order is completely determined by the mean free-surface

elevation ζ̂(1,0) in the sense that the amplitude variables can be written as

ϕ̂(1,0)(X h, T , z) = Φ(z) ζ̂(1,0) (X h, T ). (6.5)

For an arbitrary value of ζ̂(1,0) the form function Φ(z) of each variable ϕ̂(1,0) is

determined numerically. Although ζ̂(1,0) = 0 and thus ϕ̂(1,0) = 0, their temporal and
spatial derivatives in the horizontal direction are not necessarily equal to zero.

The first-order first-harmonic solution represents the carrier wave solution. This
problem is solved most easily by introducing related variables

ϕ̆(1,1) = ϕ̂(1,1) − η̂(1,1) ∂ϕ̂
(1,1)

∂z
, (6.6)

which up to first order can be seen as the Eulerian counterpart of the amplitude
function of the generalized Lagrangian variable, ϕ̂(1,1). For laminar flow (ν = ν0)
the equations for ϕ̆(1,1) reduce to the so-called Orr–Sommerfeld equation, which is
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often used in the study of hydrodynamic stability, see e.g. Drazin & Reid (1984). The
carrier wave solution will show thin wave boundary layers near the bottom and the
free surface. Outside the boundary layers the velocities will be close to the velocities
obtained with the linear potential-flow theory. For a given frequency ω, the unknown
wavenumber k can be determined and will be complex valued. The imaginary part of
k reflects the wave decay due to dissipation.

Our main interest concerns the second-order mean motion (n = 2, m = 0). The
forcing terms are no longer equal to zero, but contain temporal and (horizontal)
spatial derivatives of first-order zeroth-harmonic variables (n = 1, m = 0) as well as
correlations of wave-related variables (n = 1, m = ±1). For second- and higher-order
problems (n > 2) the homogeneous problem is similar to the zeroth- and first-order
problem. Because the forcing terms are non-zero, a constraint must be imposed to
avoid secular behaviour of the particular solution. For m = 0 this so-called solvability
condition reads ∫ 0

−h
F̂ (2,0)dz = L̂(2,0) − Ĥ (2,0)

3 . (6.7)

By substituting (B 5), (B 8), (B 9) into (6.7) and writing û(1,0) = Û(1)ζ̂(1,0), the solvability
condition reduces to a relation between the temporal and horizontal derivatives of
the first-order mean surface elevation,

∂ζ̂(1,0)

∂T
+ û(0,0)

α |(z=0)

∂ζ̂(1,0)

∂Xα

+

(∫ 0

−h
Û(1)dz

)
∂ζ̂(1,0)

∂Xα

= i
(
k − k̄

) ∫ 0

−h
ũ(2,0)dz + w̃(2,0) |(z=0) . (6.8)

Here ũ(2,0) and w̃(2,0) denote the second-order approximation of the Stokes correction,
given in Appendix B by relation (B 4). By writing each temporal or spatial gradient
of a first-order dependent variable as a product of its form function and the gradient
of the first-order mean surface elevation, as in (6.5), and substituting (6.8) to remove
the temporal gradients from the expressions for the forcing functions, an extra

dependent variable ∂ζ̂(1,0)/∂Xα is introduced. Therefore, an additional constraint has
to be imposed. As for the situation of currents without waves, the gradient of the
mean free-surface elevation is chosen such that relation (6.1) still holds at second
order. Because the mean free-surface elevation is assumed to be zero, this results in∫ 0

−h
û(2,0)dz = 0. (6.9)

After evaluation of the driving force, the linear non-homogeneous system of ODEs
is solved numerically.

6.2. Comparison with observations

As already remarked two different sets of laboratory wave–current channel measure-
ments are used to verify the present model. Firstly, the mean flow generated by a
uniform regular wave train is considered. Both the analytical conduction solution
presented by Longuet-Higgins (1953) for the horizontal drift, or mass transport for
waves, in a viscous fluid, and experimental observations of the drift velocities in a
closed wave channel by Mei et al. (1972) are taken as a reference. Although these
references are based on pure Lagrangian averaging, i.e. averaging by following a
single fluid particle, it is nevertheless legitimate to compare the results with the GLM
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Figure 1. Second-order drift velocities: (a) Re(kh) = 1.02, (b) Re(kh) = 1.81.

results obtained by the present model. This is due to the fact that the present model
provides GLM velocities which are of second order, and if there is no initial current,
the difference between a pure Lagrangian mean velocity and a GLM velocity can be
proven to be of third order.

Note that our model computes the solution over the whole depth at once, whereas
Longuet-Higgins used a three-layer approach. He first solved the equations for the
mean flow in the boundary layers in order to obtain boundary conditions for the
interior problem. Furthermore, Longuet-Higgins (1953) neglected the effect of wave
decay. In the present model this effect is taken into account. The wave decay, which
is assumed to be spatial and not temporal, is ruled by the imaginary part of the
wavenumber k.

Mei et al. (1972) generated a regular wave field in a closed 12 m long, 0.76 m wide
tank with a still-water depth h = 13 cm. For waves in a closed channel a constant
horizontal pressure gradient is imposed which is chosen to yield zero mean mass
flux Q = 0. Two sets of measurements from a station 3.5 m from the wavemaker are
considered, namely a = 1.1 cm, T = 0.81 s and a = 0.76 cm, T = 0.56 s.

For these boundary layer streaming problems the eddy viscosity distribution has
been assumed constant over the vertical and chosen equal to the kinematic viscosity,
ν = 10−6 m2 s−1. This means that the second-order GLM velocity should be equal
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to Longuet-Higgins’ conduction solution, if dissipative effects such as wave decay
had been neglected. In figure 1 the results from our model are compared with the
conduction solution and the observations by Mei et al. (1972, figures 4.1a and 4.1l in
their report).

In view of the small difference between the computed solution and the conduction
solution, the conclusion is justified that the wave decay has little influence when the
flow is viscous and non-turbulent. Craik (1982a, p. 201) remarked that significant
departures from the conduction solution can be expected when the magnitude of the
imaginary part of k becomes comparable with (or greater than) h−1. However, in both
test problems this is not the case, since Im(kh) = O(10−3).

Mei et al. (1972, p. 152) remarked that for 0.9 6 Re(kh) 6 1.5 the measurements
agreed with the conduction solution. Figure 1 confirms this statement, since in the two
cases Re(kh) = 1.02 and Re(kh) = 1.81 respectively. There might be several reasons
for this. As in the analysis of Longuet-Higgins, correlations between mean quantities
are neglected in the present model, if no initial current exists. Mei (1989, § 9.5) showed
that neglecting nonlinear convective terms might be dangerous, especially if the wave
amplitude is of the same magnitude as the boundary layer thickness, which is true for
this problem. The present WKBJ expansion, which only takes into account the first
harmonic at first order, is only valid for currents that are not weak compared to the
wave motion. In fact, if there is no initial current higher harmonics should be taken
into account. Since these higher harmonics have been neglected the applied WKBJ
method might lead to wrong solutions for boundary layer streaming problems. These
higher harmonics might have a greater impact on the solution, as the velocity in the
boundary layers at the free surface and the bottom is larger. These velocities are large
in magnitude for small and large values of Re(kh), probably so large that the analysis
in the present model does not hold any more.

Secondly, wave-induced changes in an initial turbulent current are considered.
Model results are compared with measurements, obtained by Klopman (1994), in
a wave–current laboratory flume. Klopman (1994) used laser Doppler velocimetry
(LDV) flow meters to measure horizontal and vertical velocities of the total turbulent
flow. In the present model a turbulent current with a mean horizontal mass transport
velocity of Q = 0.08 m s−1 was generated in a flume with a still-water depth h = 0.50 m.
A monochromatic wave field with a wave period T = 1.44 s and wave amplitude
a = 0.060 m is imposed on the current. The following values for the empirical
constants in the turbulent model have been used: σk = 1, CD = 0.156, C

′

µ = 0.54.
These values are normally used for this type of problems, see Rodi (1984). From the
measurements the bed roughness parameter z0 = 0.037 mm. The choice za = 1 mm
results in a lengthscale `0 = 0.01 m at the still-water level.

In figure 2 the absolute value of the complex-valued amplitude functions of the
Eulerian orbital horizontal velocity u′ are given for the cases of no current, a following
current and an opposing current. The effect of wave decay is taken into account in
the model. However, as in the first test problem the wave decay does not play a
significant role. In this figure not only are the computed values from the model given,
but the values measured by Klopman (1994) as well. The Eulerian and Lagrangian
disturbances are related by u′ = u` − ξk∂uL/∂xk + O(a2). The difference between the
two disturbances is at most 1.3%. The model results do not correspond exactly with
the measurements, although a qualitative agreement can be observed. The interaction
with a following current results in a decrease of the vertical gradient of the amplitude
of the horizontal velocity component, while the interaction with an opposing current
is shown to increase this vertical gradient.
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Figure 2. GLM results (present model) and experimental results (Klopman 1994) for the
first-order Eulerian horizontal velocity amplitude profile.
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Figure 3. GLM results (present model) and experimental results (Klopman 1994) for the
Eulerian-mean horizontal velocity profile.

The modifications of the mean horizontal velocity profile are shown in figure 3.
Here the Eulerian-mean velocity profiles for waves following and opposing the current
can be compared to the current profile in the situation without waves. In each case the
total discharge with waves is the same as without waves. Comparing the model results
with the experimental data of Klopman (1994) not only can a qualitative agreement
be observed, but the computed velocity profiles show quantitative correspondence as
well. The changes of the current velocity profiles due to the presence of following
or opposing waves are significant. The waves propagating in the current direction
cause a reduction of the mean velocity shear, or vertical gradient of the mean
horizontal velocity, whereas waves opposing the current increase the velocity shear.
This kind of behaviour has also been reported by Bakker & Van Doorn (1978)
and Kemp & Simons (1982, 1983) in their experimental studies on wave–current
interaction.

In the boundary layer at the free surface, where no experimental data are available
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due to the Eulerian measuring procedure, a rather sharp gradient of the horizontal
velocity can be observed. This behaviour might be ascribed to the simplified turbulence
model, which is not able to describe the wave motion, and as a result the wave-induced
driving force for the mean motion, in this boundary layer in a proper way.

7. Conclusions
In this paper the GLM formulation is used to split the oscillating motion from the

mean motion over the whole depth in a unique and unambiguous way. GLM equations
have been derived for the combined wave–current motion, which differ from the
original GLM equations of Andrews & McIntyre (1978a). Due to the consideration of
viscosity and turbulent motion, the GLM equations derived by Andrews & McIntyre
(1978a) are difficult to solve exactly; consequently some approximation is necessary.
A set of equations which have a similar structure to the equations in Eulerian form
has been obtained. As a result, numerical solution techniques solving problems in the
conventional Eulerian formulation can be applied. A WKBJ-type perturbation-series
approach has been employed to obtain the modification of the amplitude functions
of the orbital velocities and the changes of the profiles of the mean velocities, all
induced by the wave–current interactions.

Results from the test problems are satisfactory. The wave-induced horizontal drift
profiles, which have been obtained for the situation without initial current, agree
with Longuet-Higgins’ conduction solution. However, these results do not agree with
experimental results of Mei et al. (1972) in all situations that were considered. Neglect
of nonlinear convective terms might be a reason for this.

The changes of the vertical gradient of the horizontal velocity amplitude profile,
caused by a following or opposing current, and the changes of the vertical gradient
of the mean horizontal velocity, induced by the modified wave field propagating
in the current direction or opposite to this direction, match both qualitatively and
quantitatively with the experimental data. For these problems it is not useful to go to
higher order in the WKBJ expansion. The model verification of the boundary layer
streaming problem showed that inclusion of higher harmonics might be necessary.
Since these higher harmonics have been neglected in the present WKBJ expansion,
the model results will not necessarily be improved by going to higher order of
approximation in the GLM equations or higher order of accuracy in the WKBJ
expansion. Further study for this type of problems is required. However, this is
beyond the scope of the present paper.

In modelling the wave-channel problems, variations in cross-direction have been
neglected in the present paper. Since these variations might have some impact on the
mean velocities, a three-dimensional description of the motion in GLM formulation
is desirable. Several authors, e.g. Dingemans et al. (1996) have already shown that
in wave–current channels lateral variations might be significant. In order to include
effects that are caused by these variations the model has to be extended to three
dimensions.

This research is supported by the Technology Foundation (STW), The Netherlands,
by Delft Hydraulics, The Netherlands and by the Commission of the European
Communities Directorate General for Science, Research and Development (contract
no. MAS3-CT95-0011, MAST-project Kinematics and Dynamics of Wave-Current
Interactions).
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Appendix A. Alternative derivation of GLM momentum equation
A.1. Some initial properties for transformation

In order to deal properly with the transformation from Eulerian to GLM formulation
and vice versa via the mapping x→ x+ ξ, some important consequences of the chain
rule are outlined. First, the chainrule itself yields

∂ϕξ

∂xi
=

∂ϕ

∂Ξj

∂Ξj

∂xi
,

∂ϕ

∂Ξi
=
∂ϕξ

∂xj

∂xj

∂Ξi
. (A 1)

The final term ∂xj/∂Ξi in (A 1) can be expressed in terms of ∂Ξj/∂xi ≡ δij + ∂ξj/∂xi
by introducing Kij as the cofactors of J , which satisfy

∂Ξi

∂xk
Kij = Jδkj =

∂Ξk

∂xi
Kji. (A 2)

For small wave amplitude a the following approximate expression for the cofactor
Kij can be derived from the first relation in (A 2):

Kij = J

(
δij −

∂ξj

∂xi
+
∂ξk

∂xi

∂ξj

∂xk

)
+ O(a3). (A 3)

Andrews & McIntyre (1978a, p. 640) and, in a more fundamental way Dingemans
(1997, p. 240), showed that the second relation in (A 1) can then be rewritten as

∂ϕ

∂Ξi
=

1

J
Kij

∂ϕξ

∂xj
. (A 4)

Further properties of J and Kij can be found in Dingemans (1997).

A.2. Expressions in terms of GLM quantities

The acceleration term Dui/Dt is transformed by using a direct consequence of relation
(2.2), (

Dϕ

Dt

)ζ
= D

L (
ϕξ
)
. (A 5)

Since Dui/Dt is considered at the fixed point x and relation (A 5) considers the
Eulerian material derivative at the disturbed position Ξ , a Taylor series expansion
around Ξ is carried out. For some quantity ϕ(x, t) this yields

ϕ(x, t) = ϕ(Ξ − ξ, t)

= ϕ(Ξ, t) +

∞∑
n=1

(−1)n

n!
ξj1 . . . ξjn

∂nϕ(Ξ, t)

∂Ξj1 · · · ∂Ξjn
. (A 6)

By applying the chainrule (A 4) to the partial derivatives occurring in the summation
in the right-hand side of relation (A 6), the partial derivatives to Ξj can be replaced
by partial derivatives to xj . By defining for some quantity φ = φ(x, t) the operator

T(φ, ξ, x, t) =

∞∑
n=1

(−1)n+1

n!
ξj1ξj2 . . . ξjn

1

J
Kj1m1

∂

∂xm1

(
1

J
Kj2m2

∂

∂xm2

[
· · · 1

J
Kjnmn

∂φ

∂xmn

])
,

(A 7)

relation (A 6) can be written as

ϕ(x, t) = ϕξ(x, t)−T(ϕξ, ξ, x, t). (A 8)
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According to the definition of the Stokes correction, given by (2.7), averaging relation
(A 8) shows that an expression in terms of GLM quantities can be obtained by
averaging the operator T(ϕξ, ξ, x, t). By substituting (A 3) into (A 8), (A 7) a second-
order approximation for the Stokes correction is derived,

ϕS (x, t) ≡ ϕL(x, t)− ϕ(x, t)

=

〈
ξj

(
∂ϕξ

∂xj
− ∂ξk

∂xj

∂ϕξ

∂xk

)〉
−
〈

1
2
ξjξk

∂2ϕξ

∂xj∂xk

〉
+ O(a3). (A 9)

A.3. Derivation of GLM equations

For the alternative derivation of the GLM equations of motion the momentum
equation in Eulerian formulation is transformed by applying the definition of the
total Stokes correction. The only difficulty concerns the treatment of the acceleration
term. However, relation (A 9) can also be exploited to express the Dui/Dt entirely in
terms of GLM quantities. Substitution of relation (A 5) into the expression that is
obtained after expanding the acceleration term around Ξ , yields

Dui
Dt

(x, t) = D
L
uζi − ξj

∂

∂xj

(
D
L
uζi

)
+ξj

∂ξk

∂xj

∂

∂xk

(
D
L
uζi

)
+ 1

2
ξjξk

∂2

∂xj∂xk

(
D
L
uζi

)
+ O(a3). (A 10)

Extra attention is paid to the second term on the right-hand side of relation (A 10),
which upon using (2.6), can be written as

ξj
∂

∂xj

(
D
L
uζi

)
=

∂

∂xj

(
D
L
(
ξju

ζ
i

))
− ∂

∂xj

(
u`j u

ζ
i

)
− ∂ξj

∂xj
D
L
uζi . (A 11)

Substitution of both the acceleration term (A 10) and definition (A 9) of the total
Stokes correction into the momentum equation in Eulerian formulation results in a
momentum equation in terms of Lagrangian quantities,

D
L
uζi +

1

ρ

∂pζ

∂xi
− 1

ρ

∂τζij

∂xj
− Fζi

=
1

ρ

∂pS

∂xi
− 1

ρ

∂τSij

∂xj
− FSi +

∂

∂xj

(
D
L
(
ξju

ζ
i

))
− ∂

∂xj

(
u`j u

ζ
i

)
− ∂ξj

∂xj
D
L
uζi

−ξj
∂ξk

∂xj

∂

∂xk

(
D
L
uζi

)
− 1

2
ξjξk

∂2

∂xj∂xk

(
D
L
uζi

)
+ O(a3). (A 12)

In the right-hand side of this momentum equation the correction ϕS is defined
as ϕS = T(ϕξ, ξ, x, t). Furthermore, the divergence of the disturbance displacement
appears. As long as the Eulerian disturbance velocity field u′ = u−u is divergence-free,
∂u′j/∂xj = 0, the divergence of the disturbance displacement is of second order,

∂ξj

∂xj
= O(a2). (A 13)

For the GLM motion the following equation can be derived by averaging equation
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(A 12) and using (A 13):

D
L
uLi +

1

ρ

∂pL

∂xi
− 1

ρ

∂τLij

∂xj
− FLi

=
1

ρ

∂pS

∂xi
− 1

ρ

∂τSij

∂xj
− FSi +

∂

∂xj

(
D
L
(
ξju

`
i

))
− ∂

∂xj

(
u`j u

`
i

)
−
〈
ξj
∂ξk

∂xj

〉
∂

∂xk

(
D
L
uLi

)
− 1

2
ξjξk

∂2

∂xj∂xk

(
D
L
uLi

)
+ O(a3). (A 14)

Subtracting equation (A 14) from (A 12) provides the equation for the disturbed
Lagrangian motion. Substitution of the fluctuating part of the total Stokes correction
into the resulting equation then leads to

D
L
u`i +

1

ρ

∂

∂xi

(
p` − ξj

∂pL

∂xj

)
− ∂

∂xj

(
τ`ij − ξk

∂τLij

∂xk

)
= ξj

∂

∂xj

(
D
L
uLi

)
+ O(a2). (A 15)

A.4. Shear stresses

For the derivation of the GLM shear stresses in terms of GLM velocities, definition
(3.1) is used. By definition the shear stresses have to be evaluated at disturbed
positions. According to the chain rule (A 4) the following expression for the shear
stresses is obtained:

τζij

ρ
=
νζ

J

(
Kjk

∂uζi
∂xk

+Kik

∂uζj

∂xk

)
. (A 16)

By averaging (A 16) a second-order approximation of the mean shear stresses is
obtained,

τLij

ρ
=
νL

J

(
∂uLi
∂xj
−
〈
∂ξk

∂xj

∂u`i
∂xk

〉
+

〈
∂ξm

∂xj

∂ξk

∂xm

〉
∂uLi
∂xk

+
∂uLj

∂xi
−
〈
∂ξk

∂xi

∂u`j

∂xk

〉
+

〈
∂ξm

∂xi

∂ξk

∂xm

〉
∂uLj

∂xk

)

+
1

J

(〈
ν`
∂u`j

∂xi

〉
−
〈
ν`
∂ξk

∂xi

〉
∂uLj

∂xk
+

〈
ν`
∂u`i
∂xj

〉
−
〈
ν`
∂ξk

∂xj

〉
∂uLi
∂xk

)
+ O(a3).

(A 17)

Subtracting equation (A 17) from (A 16) results in

τ`ij

ρ
=
νL

J

(
∂u`i
∂xj
− ∂ξk

∂xj

∂uLi
∂xk

+
∂u`j

∂xi
− ∂ξk

∂xi

∂uLj

∂xk

)
+
ν`

J

(
∂uLj

∂xi
+
∂uLi
∂xj

)
+ O(a2). (A 18)

The GLM and disturbed eddy viscosity νL and ν` have to be determined by a
turbulence model. When the flow is viscous and non-turbulent, νL equals the kinematic
viscosity and ν` = 0.
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Appendix B. Driving forces at different orders of approximation
The explicit solutions will be presented here up to second order. For the zeroth-

order problem (n = 0) the forcing terms are given by

F̂ (0,0) = Ĥ
(0,0)
i = K̂

(0,0)
i = L̂(0,0) = T̂

(0,0)
ij = 0, (B 1a)

Ĝ(0,0)
α = τ̂

(0,0)
αb /h, (B 1b)

Ĝ
(0,0)
3 = −g. (B 1c)

At first order (n = 1) all the forcing terms are zero. i.e.

F̂ (1,0) = Ĝ
(1,0)
i = Ĥ

(1,0)
i = K̂

(1,0)
i = L̂(1,0) = T̂

(1,0)
ij = 0, (B 2)

F̂ (1,1) = Ĝ
(1,1)
i = D̂

(1,1)
i = Ĥ

(1,1)
i = K̂

(1,1)
i = L̂(1,1) = T̂

(1,1)
ij = 0. (B 3)

The equations for the second-order mean motion (n = 2, m = 0) contain forcing
terms which are no longer equal to zero, but contain temporal and (horizontal) spatial
derivatives of first-order zeroth-harmonic variables (n = 1, m = 0) as well as correla-
tions of wave-related variables (n = 1, m = ±1). The second-order approximation of
the Stokes correction of the variable ϕ will be denoted as ϕ̃(2,0). From relation (A 9)
the following expression for ϕ̃(2,0) can be derived:

ϕ̃(2,0) =

[
ikβξ̂

(1,−1)
β

(
ϕ̂(1,1) − η̂(1,1) ∂ϕ̂

(0,0)

∂z

)
− ik̄β ξ̂

(1,1)
β

(
ϕ̂(1,−1) − η̂(1,−1) ∂ϕ̂

(0,0)

∂z

)
+ η̂(1,−1) ∂

∂z

(
ϕ̂(1,1) − η̂(1,1) ∂ϕ̂

(0,0)

∂z

)
+ η̂(1,1) ∂

∂z

(
ϕ̂(1,−1) − η̂(1,−1) ∂ϕ̂

(0,0)

∂z

)
+ η̂(1,1)η̂(1,−1) ∂

2ϕ̂(0,0)

∂z2

]
EĒ, (B 4)

with k̄β the complex conjugate of kβ and E = exp(kβxβ − ωt). The forcing functions
for n = 2, m = 0 are given by

F̂ (2,0) = −
∂û

(1,0)
β

∂Xβ

+ i
(
kβ − k̄β

)
ũ

(2,0)
β +

∂w̃(2,0)

∂z
, (B 5)

Ĝ(2,0)
α = −∂û

(1,0)
α

∂T
− û(0,0)

β

∂û(1,0)
α

∂Xβ

− 1

ρ

∂p̂(1,0)

∂Xα

+
1

ρ

∂τ̂
(1,0)
αβ

∂Xβ

+i
(
kα − k̄α

) 1

ρ
p̃(2,0) − i

(
kβ − k̄β

) 1

ρ
τ̃

(2,0)
αβ −

1

ρ

∂τ̃
(2,0)
α3

∂z

+EĒ
[
(ω0 − ω̄0)

(
kβ − k̄β

) (
û(1,1)
α ξ̂

(1,−1)
β + û(1,−1)

α ξ̂
(1,1)
β

)]
−EĒ

[
i (ω0 − ω̄0)

∂

∂z

(
û(1,1)
α η̂(1,−1) + û(1,−1)

α η̂(1,1)
)]

+EĒ

[
i
(
kβ − k̄β

) ∂û(0,0)
β

∂z

(
û(1,1)
α η̂(1,−1) + û(1,−1)

α η̂(1,1)
)]

−EĒ
[
i
(
kβ − k̄β

) (
û(1,1)
α û

(1,−1)
β + û(1,−1)

α û
(1,1)
β

)]
−EĒ

[
∂

∂z

(
û(1,1)
α ŵ(1,−1) + û(1,−1)

α ŵ(1,1)
)]
, (B 6)
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Ĝ
(2,0)
3 = −∂ŵ

(1,0)

∂T
− û(0,0)

β

∂ŵ(1,0)

∂Xβ

− 1

ρ

∂τ̂
(1,0)
3β

∂Xβ

+
1

ρ

∂p̃(2,0)

∂z
− i
(
kβ − k̄β

) 1

ρ
τ̃

(2,0)
3β −

1

ρ

∂τ̃
(2,0)
33

∂z

+EĒ
[
(ω0 − ω̄0)

(
kβ − k̄β

) (
ŵ(1,1)ξ̂

(1,−1)
β + ŵ(1,−1)ξ̂

(1,1)
β

)]
−EĒ

[
i (ω0 − ω̄0)

∂

∂z

(
ŵ(1,1)η̂(1,−1) + ŵ(1,−1)η̂(1,1)

)]
+EĒ

[
i
(
kβ − k̄β

) ∂û(0,0)
β

∂z

(
ŵ(1,1)η̂(1,−1) + ŵ(1,−1)η̂(1,1)

)]
−EĒ

[
i
(
kβ − k̄β

) (
ŵ(1,1)û

(1,−1)
β + ŵ(1,−1)û

(1,1)
β

)]
−2EĒ

[
∂

∂z

(
ŵ(1,1)ŵ(1,−1)

)]
, (B 7)

Ĥ
(2,0)
i = 0, (B 8)

L̂(2,0) = −∂ζ̂
(1,0)

∂T
− û(0,0)

β |(z=0)

∂ζ̂(1,0)

∂Xβ

, (B 9)

K̂ (2,0)
α = −ζ̂(1,0) ∂τ̂

(1,0)
α3

∂z
− EĒ

[
ikα ζ̂

(1,1) p̂(1,−1) − ik̄α ζ̂
(−1,1) p̂(1,1)

]
+EĒ

[
ikβ ζ̂

(1,1) τ̂
(1,−1)
αβ − ik̄β ζ̂

(−1,1) τ̂
(1,1)
αβ

]
, (B 10)

K̂
(2,0)
3 = −ζ̂(1,0)

(
−∂p̂

(1,0)

∂z
+
∂τ̂

(1,0)
33

∂z

)
+ EĒ

[
ikβ ζ̂

(1,1) τ̂
(1,−1)
3β − ik̄β ζ̂

(−1,1) τ̂
(1,1)
3β

]
, (B 11)

T̂
(2,0)
αβ = ν̂(0,0)

(
∂û(1,0)

α

∂Xβ

+
∂û

(1,0)
β

∂Xα

)
− ν̂(0,0)EĒ

[
k̄β kγ ξ̂

(1,−1)
γ û(1,1)

α + kβk̄γ ξ̂
(1,1)
γ û(1,−1)

α

−ik̄β η̂
(1,−1) ∂û

(1,1)
α

∂z
+ ikβ η̂

(1,1) ∂û
(1,−1)
α

∂z

]
−ν̂(0,0)EĒ

[
k̄αkγ ξ̂

(1,−1)
γ û

(1,1)
β + kαk̄γ ξ̂

(1,1)
γ û

(1,−1)
β

−ik̄α η̂
(1,−1)

∂û
(1,1)
β

∂z
+ ikα η̂

(1,1)
∂û

(1,−1)
β

∂z

]
+ν̂(0,0)EĒ

[
k̄βkγ ξ̂

(1,−1)
γ η̂(1,1) + kβk̄γ ξ̂

(1,1)
γ η̂(1,−1)

−ik̄β η̂
(1,−1) ∂η̂

(1,1)

∂z
+ ikβ η̂

(1,1) ∂η̂
(1,−1)

∂z

]
∂û(0,0)

α

∂z

+ν̂(0,0)EĒ
[
k̄αkγ ξ̂

(1,−1)
γ η̂(1,1) + kαk̄γ ξ̂

(1,1)
γ η̂(1,−1)

−ik̄α η̂
(1,−1) ∂η̂

(1,1)

∂z
+ ikα η̂

(1,1) ∂η̂
(1,−1)

∂z

]
∂û

(0,0)
β

∂z
, (B 12)
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T̂
(2,0)
α3 = ν̂(0,0) ∂ŵ

(1,0)

∂Xα

− ν̂(0,0)EĒ

[
ikγ

∂ξ̂(1,−1)
γ

∂z
û(1,1)
α − ik̄γ

∂ξ̂(1,1)
γ

∂z
û(1,−1)
α

+
∂η̂(1,−1)

∂z

∂û(1,1)
α

∂z
+
∂η̂(1,1)

∂z

∂û(1,−1)
α

∂z

]
−ν̂(0,0)EĒ

[
k̄αkγ ξ̂

(1,−1)
γ ŵ(1,1) + kαk̄γ ξ̂

(1,1)
γ ŵ(1,−1)

−ik̄α η̂
(1,−1) ∂ŵ

(1,1)

∂z
+ ikα η̂

(1,1) ∂ŵ
(1,−1)

∂z

]
+ν̂(0,0)EĒ

[
ikγ

∂ξ̂(1,−1)
γ

∂z
η̂(1,1) − ik̄γ

∂ξ̂(1,1)
γ

∂z
η̂(1,−1) + 2

∂η̂(1,1)

∂z

∂η̂(1,−1)

∂z

]
∂û(0,0)

α

∂z
, (B 13)

T̂
(2,0)
33 = −2 ν̂(0,0)EĒ

[
ikγ

∂ξ̂(1,−1)
γ

∂z
ŵ(1,1) − ik̄γ

∂ξ̂(1,1)
γ

∂z
ŵ(1,−1)

+
∂η̂(1,−1)

∂z

∂ŵ(1,1)

∂z
+
∂η̂(1,1)

∂z

∂ŵ(1,−1)

∂z

]
. (B 14)
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